Сотрудники НИЛ «Проблемная радиоастрономическая лаборатория» Института физики Казанского федерального университета установили зависимость концентрации электронов, электронной и газовой температур в высокочастотном индукционном разряде пониженного давления от частоты электромагнитного поля.
Научная работа велась в рамках проекта РНФ «Численное и экспериментальное исследование высокочастотной плазмы пониженного давления для модификации поверхностей функциональных материалов», которым руководит доцент кафедры радиофизики Института физики Александр Шемахин. Полученные исследователями КФУ данные представлены в статье, опубликованной в журнале Plasma Sources Science and Technology.
«Высокочастотная индукционная плазма применяется в индукционных двигателях, с ее помощью полируют линзы, она используется для травления множества материалов различной природы, – рассказывает А.Шемахин. – Как известно, индукционная плазма зажигается вследствие электромагнитного поля, образованного катушкой. Изменяя его частоту, можно добиться существенного улучшения согласования характеристик плазмы с ВЧ-генератором, не повышая мощности установки. Тем не менее частотная зависимость важных характеристик плазмы, таких как концентрация и температура электронов, еще не определялась физиками в широком диапазоне частот, чаще всего брали 2-3 наиболее используемые в экспериментах частоты».
Сначала была исследована зависимость концентрации электронов от частоты с помощью численной модели, сообщил инженер НИЛ Проблемная радиоастрономическая лаборатория Тимур Терентьев.
«Мы предположили, что при какой-то частоте имеется пик, максимальное значение концентрации электронов. Наше предположение подтвердилось; это значило, что есть определенная частота электромагнитного поля, которую лучше использовать для той или иной установки. До этого частоту электромагнитного поля выбирали исходя из разрешенного набора частот. Теперь частота превратилась в параметр, которым мы можем управлять, чтобы добиться наилучших показателей генерации плазмы. Это восхитительно!» – проинформировал исследователь.
Участники проекта, подытожил А.Шемахин, смогли доказать, что можно увеличить концентрацию заряженных частиц, их температуру, а также получить оптимальную температуру несущего газа, подобрав частоту приложенного высокочастотного поля. Для этого не требуется вносить изменения в конструкцию газоразрядной камеры плазменной установки.
Полученные научные результаты помогут при проектировании новых установок ВЧ-плазменной обработки материалов, а также будут способствовать улучшению характеристик существующих.